

Частотная делительная автоматика

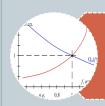
Докладчик: Чусовитин Павел Валерьевич

Структура доклада

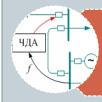
• Цели и задачи изучения дисциплины

• Содержание теоретической части дисциплины

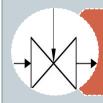
• Применяемые образовательные технологии


• Содержание практической части дисциплины

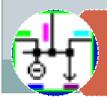
Цели изучения дисциплины


- Формирование у студентов представления об организации средств поддержания частоты в энергосистеме; представления о физике процессов, происходящих в энергосистеме при отклонении частоты
- Приобретение студентами практических навыков определения параметров срабатывания автоматики ограничения снижения частоты, анализа и моделирования переходных процессов, связанных со снижением частоты

Задачи изучения дисциплины



Изучение средств поддержания частоты в в энергосистеме в нормальных и аварийных режимах; изучение динамических свойств энергосистемы в процессах, связанных со снижением частоты


Изучение вопросов, связанных с выделением электростанций на изолированную работу при глубоком снижении частоты

Освоение методик настройки автоматики, предотвращающей аварийное снижение частоты и полное погашение энергорайона

Приобретение практических навыков анализа небалансов и связанных с ними аварийных ситуаций, сопровождающихся снижением частоты

Приобретение практических навыков моделирования переходных процессов в энергосистеме, связанных со снижением частоты и выделением энергоблоков на изолированную работу

• Регулирование частоты

- о Принципы регулирования частоты, первичное регулирование
- о Организация АРЧМ ЕЭС России

• Противоаварийное управление

- Обзор системы противоаварийного управления ЕЭС России, примеры крупных аварий
- Автоматика ограничения снижения частоты

• Частотная делительная автоматика (ЧДА)

- о Работа тепловой автоматики, собственных нужд энергоблока
- о Схемы выделения ЧДА, допустимый небаланс
- о Алгоритмы работы, настройка ЧДА
- о Выделение на автономную работу источников малой мощности
- Адаптивный принцип ЧДА

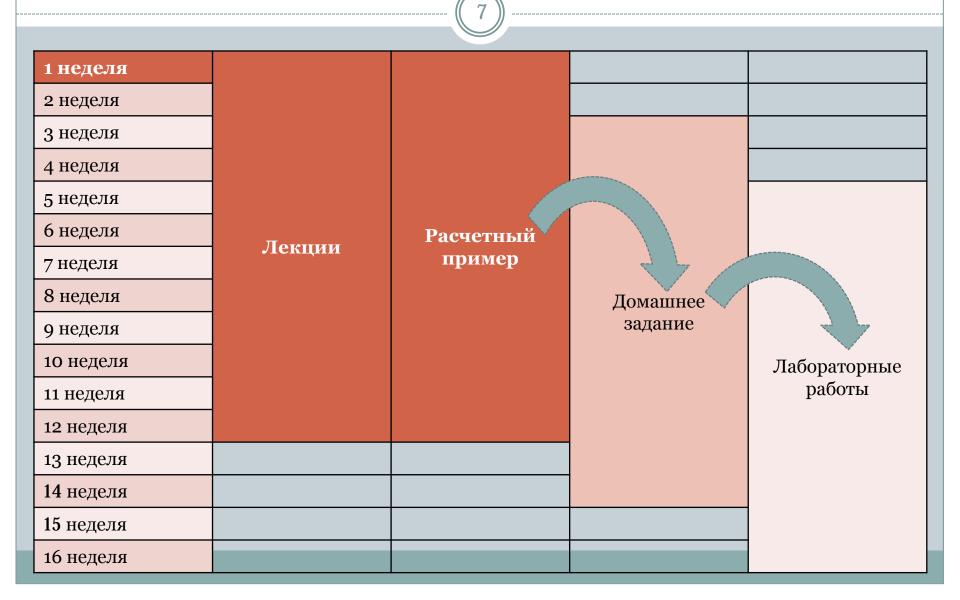
Применяемые образовательные технологии

Проблемное обучение

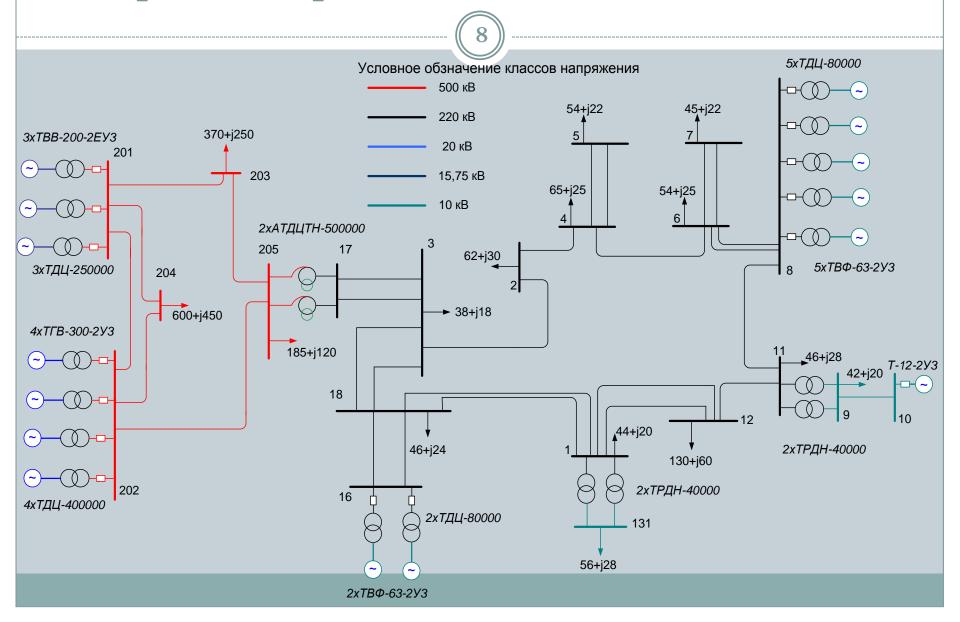
• В ходе выполнения домашнего задания и лабораторных работ студенты решают задачи эксплуатации энергосистемы, свойства которой приближены к реальной энергосистеме

Проектная работа

• В ходе выполнения домашнего задания студенты определяют настройки АЧР, принципы выполнения и схемы работы ЧДА


Практическая ориентированность

- Расчеты при выполнении домашнего задания и лабораторных работ выполняются в соответствии с существующими стандартами отрасли
- При выполнении лабораторных работ проводятся расчеты в программном комплексе для моделирования электромеханических переходных процессов



Бально-рейтинговая система

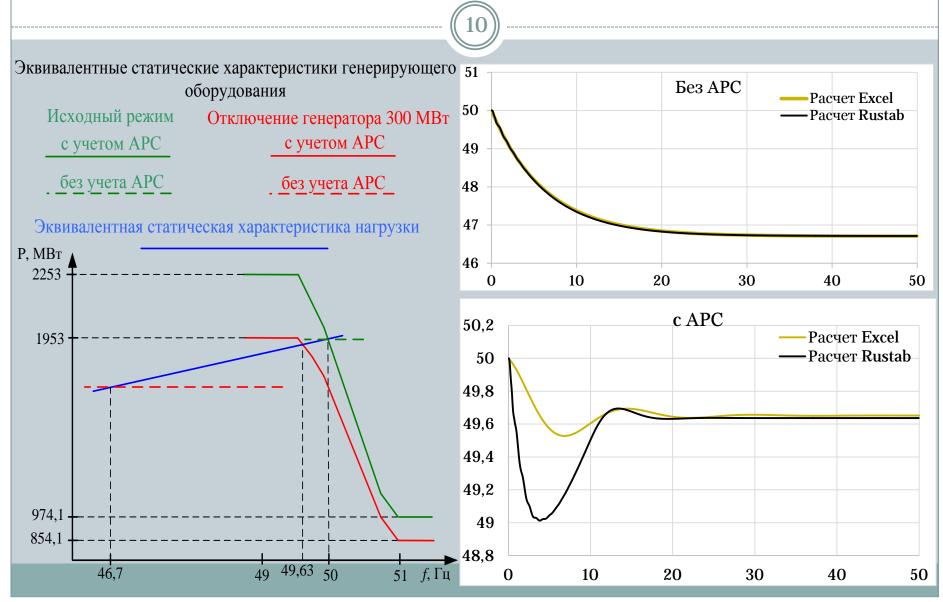
Применяемые образовательные технологии

Содержание практической части дисциплины

Построение эквивалентных статических характеристик, расчет изменения частоты во времени

/		
$/\!/$	\circ	
	9	
//		//
_		

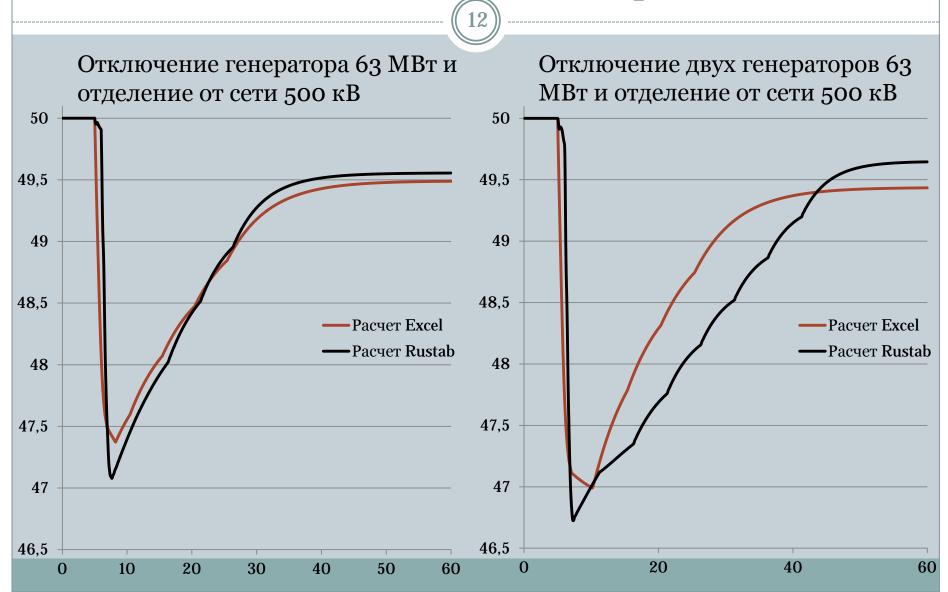
Домашнее задание


- Размещение резерва вторичного регулирования
- Определение загрузки электростанций
- Построение эквивалентных статических характеристик генерирующего оборудования и нагрузки
- Определение объема реализации резерва вторичного регулирования при отключении генератора
- Расчет отклонения частоты во времени при отключении генератора и разделении сети без учета АРС $\Delta f_*(t) = -\frac{\Delta P^*}{K_{H9}} \cdot (1 e^{-\frac{K_{H9}}{\tau_{j9}} \cdot t})$ и с учетом АРС $\Delta f_*(t) = \frac{-\Delta P^*}{K_{H9} + \frac{1}{-}} \cdot (1 e^{-\alpha \cdot t} \cdot \cos(\omega_{co\delta} \cdot t))$

Лабораторные работы

- Создание модели энергосистемы в программном комплексе для расчета электромеханических переходных процессов
- Моделирование тестовых возмущений для верификации модели

• Моделирование отключения генератора и отделения сети 220 кВ от сети 500 кВ

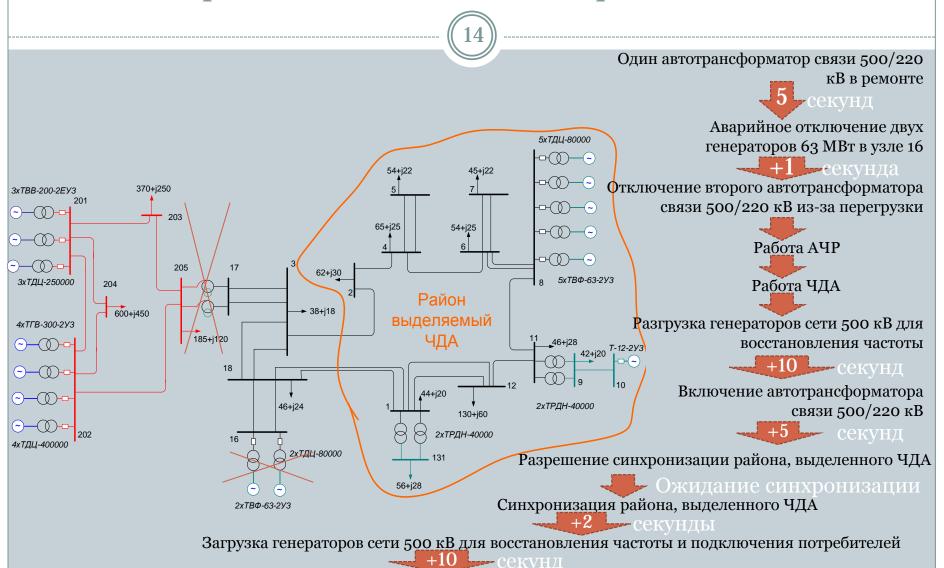

Построение эквивалентных статических характеристик, расчет изменения частоты во времени

Выбор параметров срабатывания АЧР и расчет отклонения частоты во времени

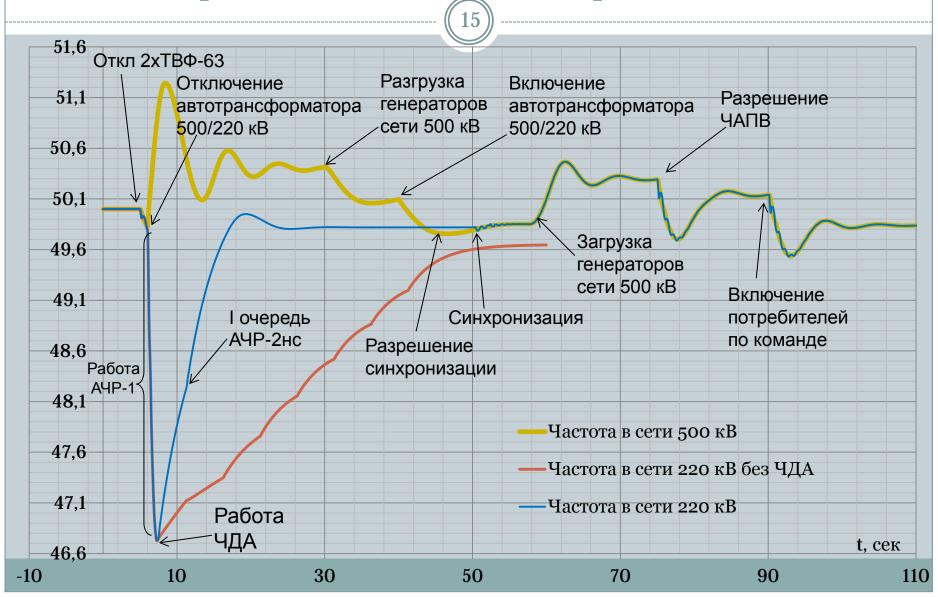
Домашнее задание	Лабораторные работы			
 Определение объема АЧР для сети 220 кВ Распределение объема АЧР по ступеням, очередям и подстанциям Определение уставок срабатывания 	• Создание модели АЧР в программном комплексе для расчета электромеханических переходных процессов и задание параметров модели в соответствии с расчетами домашнего задания			
• Расчет отклонения частоты во времени при различных небалансах: ➤Отделение сети 220 кВ	• Моделирование аварийных событий: >Отделение сети 220 кВ			
>Отключение генератора 63 МВт + отделение сети 220 кВ	▶Отключение генератора 63 МВт + отделение сети 220 кВ			
▶Отключение двух генераторов 63 МВт + отделение сети 220 кВ	▶Отключение двух генераторов 63 МВт + отделение сети 220 кВ			

Выбор параметров срабатывания АЧР и расчет отклонения частоты во времени

Выбор параметров срабатывания ЧДА и моделирование процесса выделения и синхронизации


Домашнее задание

- Анализ баланса активной мощности в сети 220 кВ после работы АЧР
- Выбор схемы выделения электростанций на автономную работу
- Определение последовательности восстановления системы при отделении
- Определение величины разгрузки генераторов сети 500 кВ для восстановления частоты с учетом последующего подключения части потребителей сети 220 кВ


Лабораторные работы

- Создание модели ЧДА
- Создание модели устройства синхронизации
- Создание модели ЧАПВ
- Задание управляющих воздействий:
- ≻Разгрузка генераторов сети 500 кВ
- **≻**Восстановление схемы
- ▶Разрешение синхронизации района, выделенного ЧДА
- ≽Загрузка генераторов сети 500 кВ
- ≻Разрешение ЧАПВ
- ▶Подключение потребителей
- Моделирование процесса протекания аварийной ситуации при отключении двух генераторов 63 МВт и отделении сети 220 кВ

Выбор параметров срабатывания ЧДА и моделирование процесса выделения и синхронизации

Выбор параметров срабатывания ЧДА и моделирование процесса выделения и синхронизации

Лабораторный стенд

(16)

Самостоятельная работа студентов

- Методические рекомендации по изучению курса
- Методические рекомендации по выполнению домашнего задания
- Методические указания по выполнению лабораторных работ
- Методические рекомендации по прохождению практики в службе электрических режимов филиала СО ЕЭС

18)

Спасибо за внимание! Вопросы?!

Бально-рейтинговая система

1.Лекции: коэффициент значимости совокупных результатов лекционных занятий – 0,3			
Текущая аттестация на лекциях	Сроки – семестр, учебная неделя	Максимальная оценка в баллах	
Посещение лекций (12)	X, 1-12	40	
Тесты по материалам лекций	X, 3,5,7,10	60	
D			

Весовой коэффициент значимости результатов текущей аттестации по лекциям – 0,4

Промежуточная аттестация по лекциям -экзамен

Весовой коэффициент значимости результатов промежуточной аттестации по лекциям - 0,6

2. Практические/семинарские занятия: коэффициент значимости совокупных результатов практических/семинарских занятий -0.3

Текущая аттестация на практических/семинарских занятиях		Максимальная оценка в баллах
Домашняя работа Ч1	X, 6	25
Домашняя работа Ч2	X, 9	45
Домашняя работа Ч3	X, 13	30

Весовой коэффициент значимости результатов текущей аттестации по практическим/семинарским занятиям—1

Промежуточная аттестация по практическим/семинарским занятиям – не предусмотрена

Весовой коэффициент значимости результатов промежуточной аттестации по практическим/семинарским занятиям - 0

3. Лабораторные занятия: коэффициент значимости совокупных результатов лабораторных занятий – 0,4

Текущая аттестация на лабораторных занятиях	Сроки – семестр,	Максимальная оценка		
	учебная неделя	в баллах		
Посещение лабораторных работ (ЛР) (12)	X, 4-16	10		
Выполнение ЛР №1	X, 5	20		
Выполнение ЛР №2	X, 8	20		
Выполнение ЛР №3	X, 12	20		
Выполнение ЛР №4	X, 14	15		
Выполнение ЛР №5	X, 16	15		
Весовой коэффициент значимости результатов текушей аттестации по дабораторным занятиям – 1				